Effect of lupinifolin on the proteome of multidrug-resistant *Enterococcus faecium*

Chutimon Promthong1, Wipawadee Sianglum1, Sittirak Rooytrakul2, Kanitta Muangngam1, Nantiya Joycharat3

1Division of Biological Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand, 2Proteomics Research Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), The National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand, 3Faculty of Traditional Thai Medicine, Prince of Songkla University, Hat Yai, Songkhla, Thailand

Introduction

Vancomycin-resistant enterococci (VRE) is a major concern of a global public health because it has been a leading cause of healthcare-associated infections (Belkuz et al., 2019). Currently, bioactive compound have gained popularity and played a key role as an alternative treatment against infectious diseases, including antibiotic drugs (Atamasov et al., 2021).

- Lupinifolin is a purified flavonoid in Thai traditional herbs.
- The bioactive compound used in this study was isolated from *Albizia myriophylla* Benth.
- Lupinifolin showed the potential antibacterial activity against Gram-positive bacteria including *Enterococcus* (Joycharat et al., 2013; Joycharat et al., 2016; Sianglum et al., 2019).
- Lupinifolin is a promising new antibiotic.
- However, the mechanism of action underlying antibacterial effects of this compound is not yet understood.

Material and methodology

Antibacterial activity

- Clinical isolate, *E. faecium* HTY0236 was collected from urine sample.
- *E. faecalis ATCC29212* was used as a control quality.
- The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of lupinifolin, vancomycin and penicillin G were determined by broth microdilution method (CLSI, 2019).

Proteomic analysis

- The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of lupinifolin, vancomycin and penicillin G were determined by broth microdilution method (CLSI, 2019)
- Amino acid sequences were compared and generated using mass spectra by LC-MS/MS.
- Protein quantitation was performed using a proteomics analysis software (Progenesis, LCC, 2017).
- The resulting data were analyzed using the Genomic Interpretation Database (GND).
- The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of lupinifolin, vancomycin and penicillin G were determined by broth microdilution method (CLSI, 2019)

Bioinformatic data analysis

- Protein sequences were analyzed using the Genomic Interpretation Database (GND).
- The resulting data were analyzed using the Genomic Interpretation Database (GND).
- The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of lupinifolin, vancomycin and penicillin G were determined by broth microdilution method (CLSI, 2019)

Results

Table 1 MIC and MBC of *E. faecium* HTY0236 and *E. faecalis* ATCC29212

<table>
<thead>
<tr>
<th>Bacterial strains</th>
<th>Lupinifolin (μg/ml)</th>
<th>Vancomycin (μg/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MIC</td>
<td>MBC</td>
</tr>
<tr>
<td>E. faecium HTY0236</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>E. faecalis ATCC29212</td>
<td>0.5</td>
<td>2</td>
</tr>
</tbody>
</table>

Figure 1. Proteomic profiling of *E. faecium* HTY0236 after lupinifolin exposure. RIEG pathway enrichment analysis of differentially expressed proteins (DEPs). DEPs were functionally sorted into 17 functional categories according to the gene ontology annotation.

- Proteins from same pathway probably carried out their biological function together.
- RIEG database was applied to analyze the biological pathways of the lipopolysaccharide treatment, DEPs were mapped to RIEG pathway database in control vs. treatment group.
- Among these pathways, the majority of pathways were related to transporter membrane, carbohydrate metabolism, cell wall organization and replication, and DNA repair.
- The results suggested that lupinifolin mainly affected the transporter membrane, carbohydrate metabolism, cell wall organization and replication, and DNA repair.

Conclusions

- These findings mainly suggest the comprehensive proteomic profiling related to action of lupinifolin against vancomycin-resistant *Enterococcus*.
- Our works provide further evidence to support therapeutic efficiency of lupinifolin which could lead to the development of a new effective drug for treatment of multidrug resistant infections.

References

Acknowledgments

- This study was supported by grants from Prince of Songkla University, Contract No. SC650300089 and Faculty of Science Research Fund, Prince of Songkla University, Contract no. 1-2563-02.

chris.chut544@gmail.com