Evaluation of Spirulina Antioxidative Potential in Hyperlipidaemia

Nataša Milić1, Maja Milanović∗1, Ivan Milovanović2, Jelica Simeunović3, Dajana Blagojević3, Aleksandra Mišan4, Danijela Kojić3, Anamarija Mandić4
1University of Novi Sad, Faculty of Medicine, Department of Pharmacy, Novi Sad, Serbia
2State Laboratory, Backweston Laboratory Campus, Co. Kildare, Ireland
3University of Novi Sad, Faculty of Sciences, Department of Biology and Ecology, Novi Sad, Serbia
4University of Novi Sad, Institute of Food Technology, Novi Sad, Serbia

∗maja.milanovic@mf.uns.ac.rs

The objective of this research was to analyse the effects of spirulina supplementation against hyperlipidaemia induced oxidative stress through the evaluation of antioxidant biomarkers.

Male Wistar rats were randomly divided into five groups based on the applied diet

I normal diet
II normal diet with Spirulina plantensis
III lipogenic diet
IV lipogenic diet with concomitant spirulina supplementation
V lipogenic diet 7 weeks followed by lipogenic diet with concomitant spirulina supplementation

RESULTS

The activity of analysed oxidative stress biomarkers was noticed in all studied groups. Atherogenic diet induced lipid peroxidation and decreased GST, GPx as well as TAC levels due to the increased oxidative stress. The significant changes in SOD, CAT and TAC values were observed between group III (lipogenic diet) and V, when this microalga was added to the diet after hyperlipidaemia occurred.

Spirulina stabilized the amounts of reactive oxygen species in hyperlipidaemic rats through the amelioration of antioxidative biomarkers.

The activity of superoxide dismutase (SOD), catalase (CAT), xanthine oxidase (XOD), glutathione S-transferase (GST), glutathione peroxidase (GPx), total antioxidant activity (TAC) and lipid peroxidation was measured in hemolysate.